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I. Summary of Progress

Research efforts during the first year focused on numerical simulations of two convective

systems with the Penn StatefNCAR mesoscale model. The first of these systems was tropical

cyclone Irma, which occurred in 1987 in Australia's Gulf of Carpentaria during the A_MEX field

program. Comparison simulations of this system were done with two different convective

parameterization schemes (CPSs), the Kain-Fritsch (1993 - KF) and the Betts-Miller (Betts 1986

- BM) schemes. The second system was the June 10-11 1985 squall line simulation, which

occurred over the Kansas-Oklahoma region during the PRE-STORM experiment. Simulations of

this system using the KF scheme were examined in detail.

A. Tropical cyclone Irma

Tropical cyclone Irma formed within an array of upper-air-observation sites that was in

place for the AMEX study, allowing initial conditions to be exceptionally well-defined for a case

of tropical cyclone genesis. Simulations were performed with the hydrostatic version of the

PSU/NCAR model. The model was configured with a two-way interactive nested grid, a 75 km

grid length on the coarse mesh, and 25 km grid length on the fine mesh. Grid-resolved

precipitation processes were represented with prognostic equations for cloud water, cloud ice,

rain, and snow, while a high-resolution Blackadar (1979) planetary boundary layer scheme (Zhang

and Anthes 1982) was used..

The domain of the coarse-mesh grid (not shown) extends from the equator southward to

30 ° S latitude, while spanning the entire Australian continent and nearby ocean areas in the zonal

direction. The domain covered by the fine-mesh grid, centered on the region where tropical

cyclogenesis occurs, is shown along with initial surface meteorological conditions in Fig. 1. At

the initial time, a weak mid-level vortex is present over the northeastern Gulf of Carpentaria, and

this is reflected in the surface wind field as a cyclonic circulation (Fig. 1).

Our investigation focused on the analysis of two 48 h simulations, one using the KF

scheme and the other using the BM scheme. At the 48 hour time, the central pressure of the

cyclone in the two integrations was nearly identical (cf. Figs. 2a and 3a), but the structure and

evolution of the two simulated systems were quite different. For example, the circulation center

in the KF simulation was about 175 km to the southwest of the BM system and it tilted

significantly to the north with height; the BM system was more consistent with the observed

location of Irma and had very little tilt with height.
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A significantdifferencein the evolution of the two systems was related to the partitioning

of precipitation between parameterized and explicitly-resolved production mechanisms. Both

CPSs initially generated precipitation near the circulation center at a rate of about 1 cm h "j.

However, by the end of the first hour, grid-resolved precipitation had developed in the KF run,

but not in the BM run. By the 6 h time, resolved precipitation rates in the KF simulation had risen

to over 3 cm h"_over a very small area (2 - 4 6x) near the circulation center. This intense rainfall

was embedded within a larger region of steady parameterized precipitation, accumulating at a rate

of 0.5 to 1 cm h "1. In contrast, maximum parameterized precipitation rates from the BM scheme

averaged 1 - 1.5 cm h "l during this time, but no significant grid-resolved precipitation developed.

This disparity in precipitation characteristics continued throughout the simulation. At the 48 h

time, grid-resolved latent heating was very strong near the circulation center in the KF simulation

(Fig. 2b) but relatively weak in the BM simulation (Fig. 3b).

The emergence of explicitly-resolved precipitation has significant implications in this type

of simulation. Specifically, it changes both the vertical and horizontal distributions of latent

heating, which are known to strongly influence the dynamical evolution of developing cyclones

(e.g., Hack and Schubert 1986). Because of the potential impact of resolved precipitation

processes, considerable effort was expended to determine which parameters in these two CPSs

modulate convective intensity and the transition between the different precipitation-production
mechanisms.

1.) The Kain-Fritsch scheme

A detailed analysis of the KF simulation revealed that intense localized upward motions

developed at grid points where saturation developed before the KF scheme had eliminated

conditional instability. The KF scheme is formulated to reflect the assumption that vertical

stabilization of a grid element occurs over a time period comparable to the life cycle of a single

deep convective cloud, 0.5 to 1 hour. It computes a convective-scale mass flux that would

completely eliminate CAPE for a subcloud source layer 50-100 mb deep. It accomplishes this

stabilization by removing high-0e, unstable air, from this layer in parameterized updrafts and

replacing it with relatively low-0 e downdraff air. Through this mechanism, the KF scheme is

effective at greatly reducing the convective potential of the original updraft-source layer. Above

this source layer, however, the scheme's stabilizing effect is much weaker. Thus, if a deep layer

of instability exists, the portion of this layer that is not directly modified by the parameterized

detrainment of downdraft air can become saturated by larger-scale processes while it is still

conditionally unstable. The resultant structure is absolutely unstable. This type of instability (Fig.

4) preceded the development of intense vertical motions and excessive localized precipitation
rates in the KF simulation.

In order to alter this process, the KF scheme was modified so that multiple clouds could

develop in individual grid columns. In particular, each model layer was evaluated independently

as a potential updraft source layer and the downdratt associated with any updraft was constrained

to detrain all of its mass in this source layer. This procedure provided a mechanism to allow for

an efficient and simultaneous stabilization &multiple model layers.

This modification proved to be very effective at preventing the development of absolutely

unstable layers and a simulation with the modified scheme produced only trace amounts of grid-

scale rainfall. However, parameterized convective precipitation rates decreased significantly in



thissimulationaswell, andthecycloneshowedonlyminimalintensificationby48 h. Examination
of this integrationsuggestedthatthemodifiedconvectionalgorithmwastoo efficientat stabilizing
the atmospherei.e.,CAPEin themodelatmospherewasremovedwithout enoughlatentheat
releaseto inducesignificantsurfacepressurefalls. Thus,numeroussystematicvariationsof this
multiple-cloudprocedureweretested,with parametricadjustmentsdesignedto controlthe net
rateof convectiveoverturningandthelevelof partitioningbetweensubgrid-scale(parameterized)
andgrid-scaleprecipitation.This testingrevealedthat intensificationratesin theKF simulations

. were strongly correlated with resolved-scale precipitation rates. In particular, higher grid-scale

precipitation rates were associated with more rapid intensification.

Consistent with this correlation, it was found that simulations with the KF scheme were

most sensitive to parameters that control the net convective moistening rate. One component of

the KF scheme that has the potential to significantly affect the net moistening rate is the

parameterized downdraft. The downdraft tends to induce a moistening tendency in the lower part

of the cloud layer because its downward transport of mass must be compensated by upward

motion in the cloud environment within the KF scheme. This compensating mass flux typically

results in an upward transport of moisture in this layer. Thus, increased downdraft mass flux

favors the development of a saturated layer in the lower troposphere where conditional instability

is prevalent, increasing the potential for a strong grid-scale response.

The downdraft mass flux can be adjusted by one of two ways in the KF scheme. The first

way is to modify the calculation of precipitation efficiency in the scheme. This parameter regulates

the fractional amount of the total condensate produced by the updraft that will be available to

evaporate in the downdraft. For example, a higher precipitation efficiency leaves less condensate

available for evaporation, forcing a reduction in the downdraft mass flux. The second method

involves modifications to the procedure for selecting the downdrat_ initiation level, labeled the

level of free sink (LFS) in the scheme. For example, a lower LFS reduces the depth ofthe

downdraft and, for a fixed availability of condensate for evaporation, a larger downdraf't mass
flux.

The interactions between parameterized convective feedbacks and grid-scale circulations

are .quite complex and highly non-linear, and other factors were clearly affecting the development

of these unstable structures. Significantly, however, every simulation in which significant cyclone

development occurred with the KF scheme involved a grid-scale response to absolutely unstable

vertical structures, i.e., a grid-scale manifestation &convective overturning. Thus, this response

appeared to be an essential part of the deepening process. The most realistic simulations with the

KF scheme seemed to achieve a delicate, quasi-balanced development involving a controlled grid-

scale response to this instability, large-scale destabilization, and parameterized convective
feedbacks.

2.) The Betts-Miller Scheme

Grid-resolved precipitation rates in the simulation with the BM scheme were generally

much smaller than those produced in the KF runs. In fact, during much of the 48 h simulation,

resolved rainfall was negligible in the vicinity of the circulation center. However, there was a

critical time period, from about 12 to 24 hours into the simulation, when resolved precipitation

rates exceeded 1 cm h"_ at isolated grid points and unstable grid-scale structures and responses

were very similar to those seen in the K.F simulations. The strong upward motions associated
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with these structures developed at the circulation center and were accompanied by a drop in

surface pressure from 1007 mb to 1004 nab. This pressure drop, although rather small in an

absolute sense, marked the transition of the surface pressure field from a largely flat pattern with a

slight, amorphous depression near the circulation center to a well-defined circular surface low

with two closed-millibar contours. Thus, the genesis stage of the BM simulation was clearly

associated with a grid-resolved overturning process similar to that observed in the KF run,

suggesting that this process is a critical element of the intensification of simulated systems when
this scheme is used as well.

Resolved precipitation rates near the circulation center dropped off rapidly as the

simulation approached the 24 h time and as alluded to above, remained insignificant (less than

0.01 cm hl) before increasing modestly just prior to the 48 h time. Nonetheless, the central

pressure of the cyclone dropped steadily during this time period, evidently driven by

parameterized heating alone. Thus, unlike the simulations with the KF scheme, intensification of

the simulated system beyond the genesis stage did not appear to require grid-scale latent heating.

Previous studies (e.g., Baik et al. 1990) have shown that the level of partitioning between

parameterized and grid-resolved latent heating in this type of environment can be changed by

modifying the convective adjustment time in the BM scheme. Specifically, when the adjustment

time is lengthened, convective heating and drying rates are decreased, increasing the likelihood

that grid-scale saturation and precipitation will occur before conditional instability is removed. In

a sensitivity test with the BM scheme, the adjustment time scale was changed from 3000 s to

7200 s. This simulation did produce higher grid-resolved precipitation rates, but unlike the KF

runs, the resolved heating maxima were not co-located with the circulation center. Furthermore,

the central pressure of the simulated system had only dropped to 1005 mb by the 48 h time,

compared with 994 mb in the control run (Fig. 3a). Thus, any correlation between cyclone

intensity and grid-resolved precipitation rates was less obvious when the BM scheme was used.

B. The June 10-11 Squall Line

The June 10-11 1985 squall line is an exceptionally well-documented MCS that has been

successfully simulated by several investigators (e.g., Zhang et al. 1989; Grell 1993). We emulated

previous simulations of this case for the purpose of identifying the elements of the modeling

system's representation of deep convection that were most important in generating a realistic

simulation. In particular, we used a model configuration and initial condition identical to Zhang et

al. (1989 - ZGP), with the one exception being that we used the KF scheme on the fine mesh grid

whereas ZGP used the Fritsch-Chappell (1980 - FC) scheme.

The KF scheme was developed within the framework of the FC parameterization, but

unlike the FC scheme, it was designed to conserve mass, moisture, and thermal energy. However,

in early testing it was found that when conservation principles were imposed in the KF scheme so

that computations deviated from the original FC approach, the quality of the June 10-11 squall

line simulation suffered. In particular, when the simulation was run with conservation imposed,

the southern flank of the system was considerably weaker and propagated more slowly (compare

Figs. 4a and b), in poorer agreement with observations.

An in-depth analysis of this tendency revealed the underlying cause for the difference, as

described below. The original FC scheme is non-conservative because it is formulated such that

updraft mass fluxes, and compensating environmental subsidence, are not computed below cloud
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base.More specifically,they are not continued below cloud base and down to the source layers

for the updraft air, resulting in an under-estimation of sub-cloud layer drying effects compared to

a mass-conservative calculation. A significant consequence of the non-conservative approach is

that more moisture is available in the low levels during, and following, a convective cycle,

increasing the chances that a second, reinforcing cycle will be initiated and/or the grid-scale

environment will become saturated before conditional instability is removed. Consistent with this

effect, when updrat_ mass flux and compensating subsidence calculations were made only at cloud

base and above in the KF scheme, the simulated results agreed better with ZGP's results and

observations of this case. Thus the KF scheme was kept in a non-conservative configuration for

this testing. It should be recognized, however, that this sensitivity is in itself an important result.

As was deduced in the simulation of tropical cyclone Irma, grid-scale latent heat release

was found to be a critically important component ofthe June 10-11 squall line simulation. At the

9 hour time of this simulation, the convective line was realized almost entirely as a parameterized

feature. However, over the next six hours both the areal coverage and intensity of grid-scale

rainfall increased rapidly (Fig. 5) as the convective system reached its mature stage. Over that

portion of the simulated line where mesoscale circulations were strongest and the most distinctive

perturbations developed, precipitation processes followed a characteristic sequence as the

disturbance passed overhead. Specifically, precipitation began as subgrid-scale, parameterized

convection, quickly became a mixture of parameterized convection and grid-resolved rainfall, and

eventually ended as a period of resolved precipitation only.

It was during the intermediate stage of development, when parameterized and explicitly-

resolved precipitation processes were both active, that vertical circulations became most intense.

As in the Irma case, an ubiquitous precursor to these intense vertical motions was the

development of a moist, absolutely unstable vertical structure that formed because the grid-scale

environment became saturated before the convective parameterization scheme had consumed all

of the potential buoyant energy (e.g., see Fig. 6). The grid-scale response to this structure was a

hydrostatic manifestation of deep convective overturning. Thus, deep convection was realized in

the model as a combination of parameterized and explicitly resolved processes. Over much of the

convective line, themesoscale contribution to convective overturning rivaled, and often exceeded

the parameterized contribution.

As with the simulations of Irma, numerous attempts were made to assure that conditional

instability was removed before grid-scale latent heat release becomes significant. However, as

with Irma, each modification of the KF scheme proved to be detrimental to the quality of the

mesoscale simulation. This testing has led us to conclude that there are two important reasons

why convection in these systems is best represented as a hybrid ofparameterized feedbacks and

grid-scale overturning. First, it must be acknowledged that CPSs are not designed to represent

mesoscale circulations and interactions between convective clouds. Even the most sophisticated

CPSs are very crude representations &the highly nonlinear processes involved in atmospheric

convection. Existing schemes cannot represent convective clouds that slope with height; they

handle momentum transports very poorly, if at all; the vertical distribution of heating and

moistening effects are based on simplistic cloud models. Most importantly, they are not designed

to represent the nonlinear interactions and organizational tendencies that characterize ensembles

of precipitating convective clouds. These processes must be represented on resolved scales if

they are to be represented at all because the full equations of motion provide continuity and all-

encompassing effects that CPSs lack. Second, it appears that mesoscale circulations evolve in a



muchmorerealisticmannerwhentheyaredriven,at leastin part,bytheprimarydriving forcefor
thewholesystem,i.e.,convectiveinstability. Within thatcomponentof theconvectivecirculation
thatis manifestedasgrid-resolvedoverturning,upward(andeventuallydownward)motionsare
intimatelylinkedto andinseparablefrom latentheatrelease.Thiscombinedevolutionof the
dynamicandthermodynamicfieldsis moreconsistentwith whatoccursin naturethanadynamical
evolutionbasedsolelyongrid-scaleresponseto parameterizedheating.

Man3,aspects&the way in which deep convective overturning is manifested in a

mesoscale model are clearly artifacts of approximations involved in parameterizing convection and

poor resolution of convective features. Nonetheless, for the currently available CPSs, it appears

to be desirable to allow the slower modes &convective overturning to be explicitly represented

on the mesoscale grid.

II. Work Plan: March 1,1996 - February 28, 1997

The work plan for the upcoming year will focus on satisfying the objectives established for year

two in our original proposal.

A. Diagnosing and Analyzing Convective Feedback Rates in MM5

Our investigations during the current year have revealed important behavioral

characteristics of the MM4 and MM5 modeling systems. In particular, it has been found that

deep convection is represented in these modeling systems as both parameterized and explicitly

resolved modes. Over the next year, the feedbacks associated with both of these processes will be

analyzed. This analysis will involve comparisons of the magnitudes and vertical distributions of

heating and drying feedbacks coming from both the parameterization schemes and resolved phase

changes. In addition, the characteristics of the grid-scale response to these different feedbacks

will be diagnosed.

Numerous users of the MM5 modeling system (e.g., Wang and Seaman 1996; Kuo et al.

1996) have found that the KF and BM schemes tend to give the most realistic results. Therefore,

our investigations over the next year will concentrate on these two schemes.

B. Implementation and Testing of the KF, BM, and Grell Schemes in the GCE Model

The interface parameters required by the KF, BM, and Grell schemes have been identified

so that these schemes are ready to implement in the GCE. We will assist with this implementation

as needed. Once the implementation is complete, we will begin comparisons ofparameterized

heating and drying tendencies with those produced in explicit simulations of the same convective

systems by the GCE.

HI. Publications During Year 1

Kain, J.S., and J.M. Fritsch, 1996: Multiscale Convective Overturning in Mesoscale Convective

Systems: Reconciling Observations, Simulations, and Theory. Submitted to Monthly

Weather .Review.
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Wang,Y., W.-K. Tao,K.E. Pickering,A.M. Thompson,J.S.Kain,R.F.Adler,J. Simpson,P.R.
Keehn,andG.S.Lai, 1996: Mesoscalemodelsimulationsof TRACE-A andPRE-STORM
convectivesystemsandassociatedtracertransport.Journal of Geophysical Research, in

press.
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Fig. 1 Initial conditions over the fine-mesh domain for the Irma simulations, valid 1200 UTC 17

January 1987, showing sea-level pressure (contour interval = 1 mb) and surface-layer wind

vectors (maximum vector = 10.6 m s)).
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Fig. 2 Results from the 48 h time of the Irma simulation using the KF scheme showing (a) sea-

level pressure (2 mb contour interval) and surface-layer wind vectors (maximum vector =

24.5 m s"1) and (b) vertically integrated grid-scale latent heating (contour interval = 0.5 K
h")
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Fig. 3 Results from the 48 h time of the Irma simulation using the BM scheme showing (a) sea-

level pressure (2 mb contour interval) and surface-layer wind vectors (maximum vector =

21.9 m s"_)and (b) vertically integrated grid-scale latent heating (contour interval = 0.5 K

h"*)
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Fig. 4 Sea-level pressure (l mb contour interval) at the 18 h time for simulations of the June 10-

11 squall line using (a) a mass conservative and (b) a non-conservative formulation in the

KF scheme.
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Fig. S June 10-11 squall line simulation results from the 9 hr to 15 l-u-time period, showing sea-

level pressure (contour interval ] mb) with vertically-integrated parameterized convective

heating (left-hand-side) and vertically-integrated grid-scale latent heating (fight-hand-

side). Intensity of the heating is indicated by the shading scale at the bottom. Points A

and B in hours 9-11 mark the endpoints of vertical cross section analyses (not shown).

Point C marks the location of the sounding shown in Fig. 6.
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Fig. 5 (continued)
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Fig. 6 Vertical sounding on a Skew-T log-P diagram from the June 10-I 1 squall line simulation.

Sounding ]ocation is indicated by point C in Fig. 5; sounding time is 10.5 h into the
simulation.


